
Qt Quick for Qt Developers
User Interaction

Based on Qt 5.4 (QtQuick 2.4)

Contents

•  Mouse Input
•  Touch Input
•  Keyboard Input

© 2015 2

Objectives

•  Knowledge of ways to receive user input
•  Mouse/touch input
•  Keyboard input

•  Awareness of different mechanisms to process input
•  Signal handlers
•  Property bindings

© 2015 3

Demo: <Qt Examples>/declarative/toys/corkboards

Mouse Input

Mouse Areas

•  Placed and resized like ordinary items
•  Using anchors if necessary

•  Two ways to monitor mouse input:
•  Handle signals
•  Dynamic property bindings

© 2015 5

See Documentation: MouseArea Element

Clickable Mouse Area

© 2015 6

Rectangle {

 width: 400; height: 200; color: "lightblue”

 Text {

 anchors.horizontalCenter: parent.horizontalCenter

 anchors.verticalCenter: parent.verticalCenter

 text: "Press me"; font.pixelSize: 48

 MouseArea {

 anchors.fill: parent

 onPressed: parent.color = "green"

 onReleased: parent.color = "black"

 }

 }

}

Demo: qml-user-interaction/ex-mouse-input/mouse-pressed-signals.qml

Mouse Hover and Properties

© 2015 7

Rectangle {

 width: 400; height: 200; color: "lightblue”

 Rectangle {

 x: 150; y: 50; width: 100; height: 100

 color: mouseArea.containsMouse ? "green" : "white”

 MouseArea {

 id: mouseArea

 anchors.fill: parent

 hoverEnabled: true

 }

 }

}

Demo: qml-user-interaction/ex-mouse-input/hover-property.qml

Mouse Area Hints and Tips

•  A mouse area only responds to its acceptedButtons
•  The handlers are not called for other buttons, but
•  Any click involving an allowed button is reported
•  The pressedButtons property contains all buttons
•  Even non-allowed buttons, if an allowed button is also pressed

•  With hoverEnabled set to false
•  Property containsMouse can be true if the mouse area is clicked

© 2015 8

Signals vs. Property Bindings

•  Signals can be easier to use in some cases
•  When a signal only affects one other item

•  Property bindings rely on named elements
•  Many items can react to a change by referring to a property

•  Use the most intuitive approach for the use case
•  Favor simple assignments over complex scripts

© 2015 9

Touch Input

Touch Events

•  Single-touch (MouseArea)
•  Multi-touch (MultiPointTouchArea)
•  Gestures

•  Tap and Hold
•  Swipe
•  Pinch

© 2015 11

Multi-Touch Events

•  TouchPoint properties:
•  int x
•  int y
•  bool pressed
•  int pointId

© 2015 12

MultiPointTouchArea {

 anchors.fill: parent

 touchPoints: [

 TouchPoint { id: point1 },

 TouchPoint { id: point2 },

 TouchPoint { id: point3 }

]

}

MultiPointTouchArea Signals

•  onPressed(list<TouchPoint> touchPoints)
•  onReleased(...)

•  touchPoints is list of changed points.

•  onUpdated(…)
•  Called when points is updated (moved)
•  touchPoints is list of changed points.

•  onTouchUpdated(...)
•  Called on any change
•  touchPoints is list of all points.

© 2015 13

MultiPointTouchArea Signals

•  onGestureStarted(GestureEvent gesture)
•  Cancel the gesture using gesture.cancel()

•  onCanceled(list<TouchPoint> touchPoints)
•  Called when another element takes over touch handling.
•  Useful for undoing what was done on onPressed.

© 2015 14

Demo: qml-user-interaction/ex-multi-touch/main.qml

Gestures

•  Tap and Hold (MouseArea signal onPressAndHold)
•  Swipe (ListView)
•  Pinch (PinchArea)

© 2015 15

Swipe Gestures

•  Build into ListView

•  snapMode: ListView.SnapOneItem
The view settles no more than one item away from the first visible item
at the time the mouse button is released.

•  orientation: ListView.Horizontal

© 2015 16

Demo: <Qt Examples>/declarative/toys/corkboards

Pinch Gesture

•  Automatic pinch setup using the target property:

© 2015 17

Image {

 source: "qt-logo.jpg”

 PinchArea {

 anchors.fill: parent

 pinch.target: parent

 pinch.minimumScale: 0.5; pinch.maximumScale: 2.0

 pinch.minimumRotation: -3600; pinch.maximumRotation: 3600

 pinch.dragAxis: Pinch.XAxis

 }

}

Demo: qml-user-interaction/ex-pinch

Pinch Gestures

•  Signals for manual pinch handling
•  onPinchStarted(PinchEventpinch)
•  onPinchUpdated(PinchEventpinch)
•  onPinchFinished()

•  PinchEvent properties:
•  point1, point2, center
•  rotation
•  scale
•  accepted

•  set to false in the onPinchStarted handler if the gesture should not be
handled

© 2015 18

Keyboard Input

Keyboard Input

•  Basic keyboard input is handled in two different use cases:
•  Accepting text input

•  Elements TextInput and TextEdit

•  Navigation between elements
•  Changing the focused element
•  directional(arrow keys), tab and backtab

•  On Slide 28 we will see how to handle raw keyboard input.

© 2015 20

Assigning Focus

•  Uis with just one TextInput
•  Focus assigned automatically

•  More than one TextInput
•  Need to change focus by clicking

•  What happens if a TextInput has no text?
•  No way to click on it
•  Unless it has a width or uses anchors

•  Set the focus property to assign focus

© 2015 21

Using TextInputs

© 2015 22

TextInput {

 anchors.left: parent.left; y: 16

 anchors.right: parent.right

 text: "Field 1"; font.pixelSize: 32

 color: focus ? "black" : "gray"

 focus: true

}

TextInput {

 anchors.left: parent.left; y: 64

 anchors.right: parent.right

 text: "Field 2"; font.pixelSize: 32

 color: focus ? "black" : "gray"

}

Demo: qml-user-interaction/ex-key-input/textinputs.qml

Focus Navigation

•  The name_field item defines KeyNavigation.tab
•  Pressing Tab moves focus to the address_field item

•  The address_field item defines KeyNavigation.backtab
•  Pressing Shift+Tab moves focus to the name_field item

© 2015 23

TextInput {

 id: nameField

 focus: true

 KeyNavigation.tab: addressField

}

TextInput {

 id: addressField

 KeyNavigation.backtab: nameField

}

Demo: qml-user-interaction/ex-key-input/tab-navigation.qml

Key Navigation

•  Using cursor keys with non-text items
•  Non-text items can have focus, too

© 2015 24

Rectangle { id: leftRect

 x: 25; y: 25; width: 150; height: 150

 color: focus ? "red" : "darkred"

 KeyNavigation.right: rightRect

 focus: true

}

Rectangle { id: rightRect

 x: 225; y: 25; width: 150; height: 150

 color: focus ? "#00ff00" : "green"

 KeyNavigation.left: leftRect

}

Demo: qml-user-interaction/ex-key-input/key-navigation.qml

Summary

Mouse and cursor input handling:
•  Element MouseArea receives clicks

and other events
•  Use anchors to fill objects and make

them clickable
•  Respond to user input:

•  Give the area a name and refer to its
properties, or

•  Use handlers in the area and change other
named items

Key handling:
•  Elements TextInput and TextEdit

provide text entry features

•  Set the focus property to start
receiving key input

•  Use anchors to make items clickable
•  Lets the user set the focus

•  Element KeyNavigation defines
relationships between items
•  Enables focus to be moved
•  Using cursor keys, tab and backtab
•  Works with non-text-input items

© 2015 25

© 2015 26

Lab – User Input

•  Which element is used to receive mouse clicks?

•  Name two ways TextInput can obtain the input focus.

•  How do you define keyboard navigation between items?

© 2015 27

Lab – Menu Screen

•  Using the partial solution as a starting point, create a user interface similar to the one
shown above with these features:
•  Items that change color when they have the focus
•  Clicking an item gives it the focus
•  The current focus can be moved using the cursor keys

Lab: qml-user-interaction/lab-menu-screen

© 2015 28

Raw Keyboard Input

•  Raw key input can be handled by item
•  With predefined handlers for commonly used keys
•  Full key event information is also available

•  The same focus mechanism is used as for ordinary text input
•  Enabled by setting the focus property

•  Key handling is not an inherited property of items
•  Enabled using the Keys attached property

•  Key events can be forwarded to other objects
•  Enabled using the Keys.forwardTo attached property
•  Accepts a list of objects

Raw Keyboard Input

© 2015 29

Rectangle {

 width: 400; height: 400; color: "black"

 Image {

 id: rocket

 x: 150; y: 150

 source: "../images/rocket.svg"

 transformOrigin: Item.Center

 }

 Keys.onLeftPressed: rocket.rotation = (rocket.rotation - 10) % 360

 Keys.onRightPressed: rocket.rotation = (rocket.rotation + 10) % 360

 focus: true

}

Raw Keyboard Input

•  Can use predefined handlers for arrow keys:

© 2015 30

Keys.onLeftPressed: rocket.rotation = (rocket.rotation - 10) % 360

Keys.onRightPressed: rocket.rotation = (rocket.rotation + 10) % 360

•  Or inspect events from all key presses:
Keys.onPressed: {

 if (event.key == Qt.Key_Left)

 rocket.rotation = (rocket.rotation - 10) % 360;

 else if (event.key == Qt.Key_Right)

 rocket.rotation = (rocket.rotation + 10) % 360;

}

© 2015 31

Focus Scopes

•  Focus scopes are used to manage focus for items

•  Property FocusScope delegates focus to one of its children

•  When the focus scope loses focus
•  Remembers which one has the focus

•  When the focus scope gains focus again
•  Restores focus to the previously active item

