
Qt Quick for Qt Developers
States and Transitions

Based on Qt 5.4 (QtQuick 2.4)

Contents

•  States
•  State Conditions
•  Transitions

© 2015 2

Objectives

Can define user interface behavior using states and transitions:
•  Provides a way to formally specify a user interface
•  Useful way to organize application logic
•  Helps to determine if all functionality is covered
•  Can extend transitions with animations and visual effects

States and transitions are covered in the Qt documentation

© 2015 3

States

States

States manage named items

•  Represented by the State element
•  Each item can define a set of states

•  With the states property
•  Current state is set with the state property

•  Properties are set when a state is entered
•  Can also modify anchors
•  Change the parents of items
•  Run scripts

© 2015 5

See Documentation: QML States

States Example

•  Prepare each item with an id
•  Set up properties not modified by states

© 2015 6

Rectangle {
 width: 150; height: 250
 Rectangle {
 id: stopLight
 x: 25; y: 15; width: 100; height: 100
 }
 Rectangle {
 id: goLight
 x: 25; y: 135; width: 100; height: 100
 }
}

Defining States

•  Define states with names: “stop” and “go”
•  Set up properties for each state with PropertyChanges

•  Defining differences from the default values

© 2015 7

states: [
 State {
 name: "stop"
 PropertyChanges { target: stopLight; color: "red" }
 PropertyChanges { target: goLight; color: "black" }
 },
 State {
 name: "go"
 PropertyChanges { target: stopLight; color: "black" }
 PropertyChanges { target: goLight; color: "green" }
 }
]

Demo: qml-states-transitions/ex-states/states.qml

Setting the State

•  Define an initial state:

•  Use a MouseArea to switch between states:

•  Reacts to a click on the user interface
•  Toggles the parent's state property between “stop” and “go” states

© 2015 8

state: "stop”

MouseArea {

 anchors.fill: parent

 onClicked: parent.state == "stop" ?

 parent.state = "go" : parent.state = "stop"

}

Changing Properties

•  States change properties with the PropertyChanges element:

•  Acts on a target element named using the target property
•  The target refers to an id

•  Applies the other property definitions to the target element
•  One PropertyChanges element can redefine multiple properties

•  Property definitions are evaluated when the state is entered
•  PropertyChanges describes new property values for an item

•  New values are assigned to items when the state is entered
•  Properties left unspecified are assigned their default values

© 2015 9

State {

 name: "go"

 PropertyChanges { target: stopLight; color: "black” }

 PropertyChanges { target: goLight; color: "green" }

}

State Conditions

State Conditions

Another way to use states:
•  Let the State decide when to be active

•  Using conditions to determine if a state is active

•  Define the when property
•  Using an expression that evaluates to true or false

•  Only one state in a states list should be active
•  Ensure when is true for only one state

© 2015 11

Demo: qml-states-transitions/ex-states/states-when.qml

State Conditions Example

•  Define default property values and actions

© 2015 12

TextInput { id: textField
 text: "Enter text..."
 … }
Image { id: clearButton
 source: "../images/clear.svg”
 …
 MouseArea { anchors.fill: parent
 onClicked: textField.text = "" }
}

State Conditions Example

•  A clear button that fades out when there is no text
•  Do not need to define state

© 2015 13

states: [
 State {
 name: "with text"
 when: textField.text != ""
 PropertyChanges {
 target: clearButton; opacity: 1.0
 }
 },
 State {
 name: "without text"
 when: textField.text == ""
 PropertyChanges {
 target: clearButton; opacity: 0.25 }
 PropertyChanges {
 target: textField; focus: true }
 }
]

Transitions

Transitions

•  Define how items change when switching states
•  Applied to two or more states
•  Usually describe how items are animated

•  Let's add transitions to a previous example...

© 2015 15

Demo: qml-states-transitions/ex-transitions/transitions.qml

Transitions Example

•  The transitions property defines a list of transitions
•  Transitions between “stop” and “go” states

© 2015 16

transitions: [
 Transition {
 from: "stop"; to: "go"
 PropertyAnimation {
 target: stopLight
 properties: "color"; duration: 1000
 }
 },
 Transition {
 from: "go";
 to: "stop"
 PropertyAnimation {
 target: goLight
 properties: "color"; duration: 1000
 }
 }]

Wildcard Transitions

•  Use “*” to represent any state
•  Now the same transition is used whenever the state changes
•  Both lights fade at the same time

© 2015 17

transitions: [
 Transition {
 from: "*"; to: "*"
 PropertyAnimation {
 target: stopLight
 properties: "color"; duration: 1000 }
 PropertyAnimation {
 target: goLight
 properties: "color";
 duration: 1000 }
}]

Demo: qml-states-transitions/ex-transitions/transitions-multi.qml

Reversible Transitions

•  Useful when two transitions operate on the same properties
•  Transition applies from “with text” to “without text”

•  And back again from “without text” to “with text”

•  No need to define two separate transitions

© 2015 18

transitions: [
 Transition {
 from: "with text"; to: "without text"
 reversible: true
 PropertyAnimation {
 target: clearButton
 properties: "opacity";
 duration: 1000
 }
}]

Demo: qml-states-transitions/ex-transitions/transitions-reversible.qml

Parent Changes

•  Used to animate an element when its parent changes
•  Element ParentAnimation applies only when changing the parent

with ParentChange in a state change

© 2015 19

states: State { name: "reanchored"
 ParentChange {
 target: myRect
 parent: yellowRect
 x: 60; y: 20 }
 }
transitions: Transition { ParentAnimation {
 NumberAnimation {
 properties: "x,y"
 duration: 1000 }
 }
}

Demo: qml-states-transitions/ex-animations/parent-animation.qml

Anchor Changes

•  Used to animate an element when its anchors change
•  Element AnchorAnimation applies only when changing the anchors

with AnchorChanges in a state change

© 2015 20

states: State { name: "reanchored"
 AnchorChanges {
 target: myRect
 anchors.left: parent.left
 anchors.right : parent.right }
 }
transitions: Transition { AnchorAnimation {
 duration : 1000 }
}

Demo: qml-states-transitions/ex-animations/anchors-animation.qml

Using States and Transitions

•  Avoid defining complex state charts
•  Not just one state chart to manage the entire UI
•  Usually defined individually for each component
•  Link together components with internal states

•  Setting state with script code
•  Easy to do, but might be difficult to manage

•  Setting state with state conditions
•  More declarative style
•  Can be difficult to specify conditions

•  Using animations in transitions
•  Do not specify from and to properties
•  Use PropertyChanges elements in state definitions

© 2015 21

Summary – States

State items manage properties of other items:
•  Items define states using the states property

•  Must define a unique name for each state

•  Useful to assign id properties to items
•  Use PropertyChanges to modify items

•  The state property contains the current state
•  Set this using JavaScript code, or
•  Define a when condition for each state

© 2015 22

Summary – Transitions

Transition items describe how items change between states:
•  Items define transitions using the transitions property

•  Transitions refer to the states they are between
•  Using the from and to properties
•  Using a wildcard value, “*”, to mean any state

•  Transitions can be reversible
•  Used when the from and to properties are reversed

© 2015 23

Questions – States and Transitions

•  How do you define a set of states for an item?
•  What defines the current state?
•  Do you need to define a name for all states?
•  Do state names need to be globally unique?
•  Remember the thumbnail explorer page? Which states and transitions would you

use for it?

© 2015 24

Lab – Light Switch

•  Using the partial solutions as hints, create a user interface similar to the one
shown above.

•  Adapt the reversible transition code from earlier and add it to the example.

© 2015 25

Lab: qml-states-transitions/lab-switch

