Based on Qt 5.4 (QtQuick 2.4)

The Qt
Contents m Company

* Animations
« Easing Curves
* Animation Groups

) ©2015

Can apply animations to user interfaces:

« Understanding of basic concepts
« Number and property animations
« Easing curves

« Ability to queue and group animations
* Sequential and parallel animations
+ Pausing animations

« Knowledge of specialized animations
« Color and rotation animations

3 © 2015

Animations

. . . re The Qt
Why use anlmatlons, states and transitions? m Company

« Handle form factor changes

« Outline application state changes

« Orchestrate high level logic

» Natural transitions

« Our brain expects movement

* Helps the user find its way around the GUI
« Don't abuse them!

5 © 2015

. . The Qt
Animations m Company

Animations can be applied to any element
Animations update properties to cause a visual change
All animations are property animations

Specialized animation types:
* NumberAnimation for changes to numeric properties
* ColorAnimation for changes to color properties
* RotationAnimation for changes to orientation of items
* Vector3dAnimation for motionin 3D space

Easing curves are used to create variable speed animations
Animations are used to create visual effects

6 © 2015

Company

Number Animations m The Qt

Rectangle {

width: 400; height: 400
color: "lightblue"
Image {
x: 220 source: "../images/backbutton.png"

NumberAnimation on y {
from: 350; to: 150
duration: 1000

7 © 2015

. . The Qt
Number Animations m Company

Number animations change the values of numeric properties

NumberAnimation on y {
from: 350;
to: 150
duration: 1000

}

Applied directly to properties with the on keywora

They property is changed by the NumberAnimation
Starts at 350
Ends at 150
Takes 1000 milliseconds

+ Can also be defined separately

8 © 2015

Company

Property Animations m The Qt

Rectangle {
width: 400;
height: 400;
color: "lightblue"
Image {
id: image
x: 100; y: 100
source: "../images/thumbnails.png" }
PropertyAnimation {
target: image
properties: "width,height"
from: 0; to: 200;
duration: 1000
running: true

9 ©2015

Property animations change named properties of a target

PropertyAnimation ({
target: image
properties: "width,height"
from: 0; to: 200; duration: 1000
running: true

« Defined separately to the target element

« Applied to properties of the target
* Property properties is a comma-separated string list of names

« Oftenused aspartofa Transition
« Not run by default

* Setthe running property to true

10

© 2015

Number Animations Revisited

11

[

The Qt
Company

Rectangle {
width: 400; height: 400; color: "lightblue"
Rectangle {
id: rect
x: 0; y: 150; width: 100; height: 100
}
NumberAnimation {
target: rect
properties: "x"
from: 0; to: 150; duration: 1000
running: true

© 2015

Number animations are just specialized property animations

NumberAnimation {
target: rect
properties: "x"
from: 0; to: 150; duration: 1000
running: true

« Animation can be defined separately

« Applied to properties of the target
* Property properties contains a comma-separated list of property names

« Not run by default

« Setthe running property to true

12 © 2015

The Behavior Element m The Qt

Company

« Behavior allows you to set up an animation whenever a property
changes.

Behavior on x {
SpringAnimation { spring: 1; damping: 0.2 }
}

Behavior on y {
SpringAnimation { spring: 2; damping: 0.2 }

}

13 © 2015

Easing Curves

. The Qt
Easing Curves m Company

Rectangle {
width: 400; height: 400 value (1,1)
color: "lightblue"

Image {
x: 220
source: "../images/backbutton.png"
NumberAnimation on y {
from: 0; to: 350
duration: 1000 progress

easing.type: "OutExpo" OUtEXpO

15 © 2015

Apply an easing curve to an animation:

NumberAnimation on y {
from: 0; to: 350
duration: 1000
easing.type: "OutExpo"

« Setsthe easing.type property

* Relates the elapsed time
« To avalue interpolated between the from and to values
« Using a function for the easing curve
« Inthis case, the “OutExpo” curve

16

© 2015

Animation Groups

Animations can be performed sequentially and in parallel

* SequentialAnimation defines asequence
« With each child animation run in sequence

« For example:
« Arescaling animation, followed by an opacity changing animation

* ParallelAnimation defines a parallel group
« With all child animations run at the same time

« Forexample:
« Simultaneous rescaling and opacity changing animations

« Sequential and parallel animations can be nested

18

© 2015

SequentialAnimation {
NumberAnimation {
target: rocket;
properties: "scale"
from: 1.0; to: 0.5; duration: 1000
}
NumberAnimation {
target: rocket;
properties: "opacity"
from: 1.0; to: 0.0; duration: 1000
}

running: true

[]
[]
[]
[]
[]
L]
L]
L]
L]
L]
[]
[]
[]
[]
[]
[]
[]
[]
L]
L]
L]
L]
[]
[]
[]
[]
[]
[]
[]
[]
L]
®

Demo: gml-animations/ex-animations/sequential-animation.gm|

00000000000000000000000000000000

© 2015

SequentialAnimation {
NumberAnimation {
target: rocket; properties: "scale"
from: 1.0; to: 0.5; duration: 1000

}

NumberAnimation {
target: rocket; properties: "opacity"
from: 1.0; to: 0.0; duration: 1000

}

running: true

« Child elements define a two-stage animation:
* First the rocket is scaled down and then it fades out

* SequentialAnimation does notitself have a target
« Itonly groups other animations

20

[]
[]
[]
[]
[]
[]
L]
L]
L]
L]
[]
[]
[]
[]
[]
[]
[]
[]
L]
L]
L]
L]
[]
[]
[]
[]
[]
[]
[]
[]
L]
®

© 2015

; ; : The Qt
Pausing between Animations m Company
SequentialAnimation {
NumberAnimation {
target: rocket; properties: "scale"
from: 0.0; to: 1.0; duration: 1000
}
PauseAnimation { duration: 1000 }
NumberAnimation {
target: rocket; properties: "scale"
from: 1.0; to: 0.0; duration: 1000
}
running: true
}
© 2015

21

22

ParallelAnimation {
NumberAnimation {
target: rocket; properties: "scale"
from: 1.0; to: 0.5; duration: 1000
}
NumberAnimation {
target: rocket;
properties: "opacity"
from: 1.0; to: 0.0; duration: 1000
}

running: true

Demo: gml-animations/ex-animations/parallel-animation.gml

© 2015

Other animations

* ColorAnimation for changes to color properties

* RotationAnimation for changes to orientation of items

* Vector3dAnimation for motion in 3D space

* AnchorAnimation animate an anchor change

* ParentAnimation animates changes in parent values.

* SpringAnimation allows a property to track a value in a spring-like motion
* PropertyAction allows immediate property changes during animation

* ScriptAction allows scripts to be run during an animation

23 © 2015

* ColorAnimation describes color changes to items
« Component-wise blending of RGBA values

ColorAnimation {
target: rectanglel
property: "color"
from: Qt.rgba(0,0.5,0,1)
to: Qt.rgba(l,1,1,1)
duration: 1000
running: true

24 © 2015

. . . The Qt
Rotation Animation m Company

* RotationAnimation describes rotation of items

« FEasier to use than NumberAnimation for the same purpose
« Applied to the rotation property of an element

« Value of direction property controls rotation:

e RotationAnimation.Clockwise
* RotationAnimation.Counterclockwise
* RotationAnimation.Shortest - the direction of least angle between fromand to values

25 © 2015

Rotation Animation

[

The Qt
Company

Image |
id: ball
source: "../images/ball.png"
anchors.centerIn: parent
smooth: true
RotationAnimation on rotation {
from: 45; to: 315
direction: RotationAnimation.Shortest

duration: 1000

« 1 second animation

« Counter-clockwise from 45° to 315°
« Shortest angle of rotation is via 0°

26

© 2015

Path Animation

« Element PathAnimation animates an item along a path

« Manipulates the x, y and rotation properties of an element
« The target element will be animated along the path

« Value of orientation property controls the target rotation:

PathAnimation.
PathAnimation.
PathAnimation.
PathAnimation.

PathAnimation.

Fixed
RightFirst
LeftFirst
TopFirst
BottomFirst

« Value of path is specified using path element and its helpers
PathLine, PathQuad, PathCubic, PathCurve, PathArc, PathSvg

27

0t

The Qt
Company

© 2015

28

PathAnimation {
id: pathAnim
duration: 2000
easing.type: Easing.InOutQuad
target: rocket
orientation: PathAnimation.RightFirst
anchorPoint: Qt.point (rocket.width/2, rocket.height/2)
path: Path {
startX: rocket.width/2; startY: rocket.height/2
PathCubic {
x: window.width - rocket.width/2
v: window.height - rocket.height/2
controllX: x; controllY: rocket.height/2
control2X: rocket.width/2; control2Y: y

Demo: gml-animations/ex-animations/path-animation.gml

© 2015

Lab: Bouncing Ball

The Qt
Company

Starting from the first partial solution:

29

Make the ball start from the ground and return to the ground.
Make the ball travel from left to right

Add rotation, so the ball completes just over one rotation
Reorganize the animations using sequential and parallel animations
Make the animation start when the ball is clicked

Add decoration (ground and sky)

© 2015

