
Qt Quick for Qt Developers
QML Animations

Based on Qt 5.4 (QtQuick 2.4)

Contents

•  Animations
•  Easing Curves
•  Animation Groups

© 2015 2

Objectives

Can apply animations to user interfaces:
•  Understanding of basic concepts

•  Number and property animations
•  Easing curves

•  Ability to queue and group animations
•  Sequential and parallel animations
•  Pausing animations

•  Knowledge of specialized animations
•  Color and rotation animations

© 2015 3

Animations

Why use animations, states and transitions?

•  Handle form factor changes
•  Outline application state changes
•  Orchestrate high level logic
•  Natural transitions
•  Our brain expects movement
•  Helps the user find its way around the GUI
•  Don't abuse them!

© 2015 5

Demo: qml-animations/ex-thumbnailexplorer/thumbnailexplorer.qml

Animations

Animations can be applied to any element
•  Animations update properties to cause a visual change
•  All animations are property animations
•  Specialized animation types:

•  NumberAnimation for changes to numeric properties
•  ColorAnimation for changes to color properties
•  RotationAnimation for changes to orientation of items
•  Vector3dAnimation for motion in 3D space

•  Easing curves are used to create variable speed animations
•  Animations are used to create visual effects

© 2015 6

See Documentation: Animations in QML

Number Animations

© 2015 7

Rectangle {

 width: 400; height: 400
 color: "lightblue"
 Image {
 x: 220 source: "../images/backbutton.png"
 NumberAnimation on y {
 from: 350; to: 150
 duration: 1000
 }
 }
}

Demo: qml-animations/ex-animations/number-animation.qml

Number Animations

© 2015 8

Demo: qml-animations/ex-animations/number-animation.qml

Number animations change the values of numeric properties

•  Applied directly to properties with the on keyword
•  The y property is changed by the NumberAnimation

•  Starts at 350
•  Ends at 150
•  Takes 1000 milliseconds

•  • Can also be defined separately

NumberAnimation on y {
 from: 350;
 to: 150
 duration: 1000
}

Property Animations

© 2015 9

Rectangle {
 width: 400;
 height: 400;
 color: "lightblue"
 Image {
 id: image
 x: 100; y: 100
 source: "../images/thumbnails.png" }
 PropertyAnimation {
 target: image
 properties: "width,height"
 from: 0; to: 200;
 duration: 1000
 running: true
 }
 }
}

Demo: qml-animations/ex-animations/property-animation.qml

Property Animations

© 2015 10

Property animations change named properties of a target

•  Defined separately to the target element
•  Applied to properties of the target

•  Property properties is a comma-separated string list of names

•  Often used as part of a Transition
•  Not run by default

•  Set the running property to true

PropertyAnimation {
 target: image
 properties: "width,height"
 from: 0; to: 200; duration: 1000
 running: true
}

Number Animations Revisited

© 2015 11

Rectangle {
 width: 400; height: 400; color: "lightblue"
 Rectangle {
 id: rect
 x: 0; y: 150; width: 100; height: 100
 }
 NumberAnimation {
 target: rect
 properties: "x"
 from: 0; to: 150; duration: 1000
 running: true
 }
}

Demo: qml-animations/ex-animations/number-animation2.qml

Number Animations Revisited

© 2015 12

Number animations are just specialized property animations

•  Animation can be defined separately
•  Applied to properties of the target

•  Property properties contains a comma-separated list of property names

•  Not run by default
•  Set the running property to true

NumberAnimation {
 target: rect
 properties: "x"
 from: 0; to: 150; duration: 1000
 running: true
}

The Behavior Element

© 2015 13

•  Behavior allows you to set up an animation whenever a property
changes.

Behavior on x {
 SpringAnimation { spring: 1; damping: 0.2 }
}
Behavior on y {
 SpringAnimation { spring: 2; damping: 0.2 }
}

Demo: qml-animations/ex-animations/spring-animation.qml

Easing Curves

Easing Curves

© 2015 15

Rectangle {
 width: 400; height: 400
 color: "lightblue"
 Image {
 x: 220
 source: "../images/backbutton.png"
 NumberAnimation on y {
 from: 0; to: 350
 duration: 1000
 easing.type: "OutExpo"
 }
 }
}

Demo: qml-animations/ex-animations/easing-curve.qml

Easing Curves

© 2015 16

Apply an easing curve to an animation:

•  Sets the easing.type property
•  Relates the elapsed time

•  To a value interpolated between the from and to values
•  Using a function for the easing curve
•  In this case, the “OutExpo” curve

NumberAnimation on y {
 from: 0; to: 350
 duration: 1000
 easing.type: "OutExpo"
}

Animation Groups

Sequential and Parallel Animations

Animations can be performed sequentially and in parallel
•  SequentialAnimation defines a sequence

•  With each child animation run in sequence

•  For example:
•  A rescaling animation, followed by an opacity changing animation

•  ParallelAnimation defines a parallel group
•  With all child animations run at the same time

•  For example:
•  Simultaneous rescaling and opacity changing animations

•  Sequential and parallel animations can be nested

© 2015 18

Sequential Animations

© 2015 19

SequentialAnimation {
 NumberAnimation {
 target: rocket;
 properties: "scale"
 from: 1.0; to: 0.5; duration: 1000
 }
 NumberAnimation {
 target: rocket;
 properties: "opacity"
 from: 1.0; to: 0.0; duration: 1000
 }
 running: true
}

Demo: qml-animations/ex-animations/sequential-animation.qml

Sequential Animations

© 2015 20

SequentialAnimation {
 NumberAnimation {
 target: rocket; properties: "scale"
 from: 1.0; to: 0.5; duration: 1000
 }
 NumberAnimation {
 target: rocket; properties: "opacity"
 from: 1.0; to: 0.0; duration: 1000
 }
 running: true
}

•  Child elements define a two-stage animation:
•  First ,the rocket is scaled down and then it fades out

•  SequentialAnimation does not itself have a target
•  It only groups other animations

Pausing between Animations

© 2015 21

SequentialAnimation {
 NumberAnimation {
 target: rocket; properties: "scale"
 from: 0.0; to: 1.0; duration: 1000
 }
 PauseAnimation { duration: 1000 }
 NumberAnimation {
 target: rocket; properties: "scale"
 from: 1.0; to: 0.0; duration: 1000
 }
 running: true
}

Parallel Animations

© 2015 22

ParallelAnimation {
 NumberAnimation {
 target: rocket; properties: "scale"
 from: 1.0; to: 0.5; duration: 1000
 }
 NumberAnimation {
 target: rocket;
 properties: "opacity"
 from: 1.0; to: 0.0; duration: 1000
 }
 running: true
}

Demo: qml-animations/ex-animations/parallel-animation.qml

Other Animations

Other animations
•  ColorAnimation for changes to color properties
•  RotationAnimation for changes to orientation of items
•  Vector3dAnimation for motion in 3D space
•  AnchorAnimation animate an anchor change
•  ParentAnimation animates changes in parent values.
•  SpringAnimation allows a property to track a value in a spring-like motion
•  PropertyAction allows immediate property changes during animation
•  ScriptAction allows scripts to be run during an animation

© 2015 23

Color Animation

© 2015 24

•  ColorAnimation describes color changes to items
•  Component-wise blending of RGBA values

ColorAnimation {
 target: rectangle1
 property: "color"
 from: Qt.rgba(0,0.5,0,1)
 to: Qt.rgba(1,1,1,1)
 duration: 1000
 running: true
}

Rotation Animation

•  RotationAnimation describes rotation of items
•  Easier to use than NumberAnimation for the same purpose
•  Applied to the rotation property of an element
•  Value of direction property controls rotation:

•  RotationAnimation.Clockwise

•  RotationAnimation.Counterclockwise

•  RotationAnimation.Shortest – the direction of least angle between from and to values

© 2015 25

Rotation Animation

© 2015 26

Image {
 id: ball
 source: "../images/ball.png"
 anchors.centerIn: parent
 smooth: true
 RotationAnimation on rotation {
 from: 45; to: 315
 direction: RotationAnimation.Shortest
 duration: 1000
 }
}

•  1 second animation
•  Counter-clockwise from 45° to 315°

•  Shortest angle of rotation is via 0°

Path Animation

•  Element PathAnimation animates an item along a path
•  Manipulates the x, y and rotation properties of an element
•  The target element will be animated along the path
•  Value of orientation property controls the target rotation:

•  PathAnimation.Fixed

•  PathAnimation.RightFirst

•  PathAnimation.LeftFirst

•  PathAnimation.TopFirst

•  PathAnimation.BottomFirst

•  Value of path is specified using Path element and its helpers
•  PathLine, PathQuad, PathCubic, PathCurve, PathArc, PathSvg

© 2015 27

Path Animation

© 2015 28

PathAnimation {
 id: pathAnim
 duration: 2000
 easing.type: Easing.InOutQuad
 target: rocket
 orientation: PathAnimation.RightFirst
 anchorPoint: Qt.point(rocket.width/2, rocket.height/2)
 path: Path {
 startX: rocket.width/2; startY: rocket.height/2
 PathCubic {
 x: window.width - rocket.width/2
 y: window.height - rocket.height/2
 control1X: x; control1Y: rocket.height/2
 control2X: rocket.width/2; control2Y: y
 }
 }
}

Demo: qml-animations/ex-animations/path-animation.qml

Lab: Bouncing Ball

Starting from the first partial solution:
•  Make the ball start from the ground and return to the ground.
•  Make the ball travel from left to right
•  Add rotation, so the ball completes just over one rotation
•  Reorganize the animations using sequential and parallel animations
•  Make the animation start when the ball is clicked
•  Add decoration (ground and sky)

© 2015 29

Lab: qml-animations/lab-animations

