
Qt Quick for Qt Developers
Presenting Data

Based on Qt 5.4 (QtQuick 2.4)

Contents

•  Arranging Items
•  Data Models
•  Using Views
•  XML Models
•  Views Revisited

© 2015 2

Objectives

Can manipulate and present data:
•  Familiarity with positioners and repeaters

•  Rows, columns, grids, flows
•  Item indexes

•  Understanding of the relationship between models
•  Pure models
•  Visual models
•  XML models

•  Ability to define and use list models
•  Using pure models with repeaters and delegates
•  Using visual models with repeaters

•  Ability to use models with views
•  Using list and grid views
•  Decorating views
•  Defining delegates

© 2015 3

Why Use Model/view Separation?

•  Easily change the UI later
•  Add an alternative UI
•  Separation of concerns
•  Leads to easier maintenance
•  Easily change the data source

•  (XML? JSON? Other?)

•  Allows the use of 'dummy’ data during development
•  Many Qt APIs to consume the common data structures

© 2015 4

Demo: <Qt Examples>/declarative/demos/rssnews/rssnews.pro

Arranging Items

Arranging Items

Positioners and repeaters make it easier to work with many items
•  Positioners arrange items in standard layouts

•  In a column: Column
•  In a row: Row
•  In a grid: Grid
•  Like words on a page: Flow

•  Repeaters create items from a template
•  For use with positioners
•  Using data from a model

•  Combining these make it easy to layout lots of items

© 2015 6

Positioning Items

•  Items inside a positioner are automatically arranged
•  Ina 2 by 2 Grid
•  With horizontal/vertical spacing of 20 pixels

•  x, y is the position of the first item
•  Like layouts in Qt

© 2015 7

Grid {
 x: 15; y: 15; width: 300; height: 300
 columns: 2; rows: 2; spacing: 20
 Rectangle { width: 125; height: 125; color: "red" }
 Rectangle { width: 125; height: 125; color: "green" }
 Rectangle { width: 125; height: 125; color: "silver" }
 Rectangle { width: 125; height: 125; color: "blue" }
}

Demo: qml-presenting-data/ex-arranging-items/grid-rectangles.qml

Repeating Items

•  The Repeater creates items
•  The Grid arranges them within its parent item
•  The outer Rectangle item provides

•  The space for generated items
•  A local coordinate system

© 2015 8

Rectangle { width: 400; height: 400; color: "black"
 Grid { x: 5; y: 5 rows: 5; columns: 5; spacing: 10
 Repeater {
 model: 24
 Rectangle { width: 70; height: 70 color: "lightgreen" }
 }
 }
}

Repeating Items

•  Repeater takes data from a model
•  Just a number in this case

•  Creates items based on the template item
•  A light green rectangle

© 2015 9

Rectangle { width: 400; height: 400; color: "black"
 Grid { x: 5; y: 5 rows: 5; columns: 5; spacing: 10
 Repeater {
 model: 24
 Rectangle {
 width: 70; height: 70 color: "lightgreen" }
 }
 }
}

Demo: qml-presenting-data/ex-arranging-items/repeater-gird.qml

Rectangle { width: 400; height: 400; color: "black"
 Grid { x: 5; y: 5 rows: 5; columns: 5; spacing: 10
 Repeater {
 model: 24
 Rectangle {
 width: 70; height: 70 color: "lightgreen"
 Text {
 text: index
 font.pointSize: 30
 anchors.centerIn: parent }
 }
 }
 }
}

Indexing Items

•  Repeater provides an index for each item it creates

© 2015 10

Demo: qml-presenting-data/ex-arranging-items/repeater-gird-index.qml

Positioner Hints and Tips

•  Anchors in the Row, Column or Grid
•  Apply to all the items they contain

© 2015 11

Lab – Chess Board

•  Start by creating a chess board using a Grid and a
Repeater
•  Use the index to create a checker pattern

•  Use the knight.png image to create a piece that can
be placed on any square
•  Bind its x and y properties to custom cx and cy properties

•  Make each square clickable
•  Move the piece when a suitable square is clicked

•  Make the model an Array that records which squares
have been visited

•  Make the board and piece separate components

© 2015 12

Lab – Calendar

•  Start by creating a chess board using a Grid and a
Repeater
•  Put the grid inside an Item
•  Use the index to give each square a number

•  Place a title above the grid
•  Ensure that the current date is highlighted
•  Use the left.png and right.png images to

create buttons on each side of the title
•  Make the buttons navigate to the next and previous

months
•  Add a header showing the days of the week

© 2015 13

Data Models

Models and Views

Models and views provide a way to handle data sets

•  Models hold data or items
•  Views display data or items

•  Using delegates

© 2015 15

Models

Pure models provide access to data:
•  ListModel

•  XmlListModel

Visual models provide information about how to display data:
•  Visual item model: ObjectModel (replaces VisualItemModel)

•  Contains child items that are supplied to views

•  Visual data model: DelegateModel (replaces VisualDataModel)
•  Contains an interface to an underlying model
•  Supplies a delegate for rendering
•  Supports delegate sharing between the views

© 2015 16

See Documentation: Data Models

List Models

•  List models contain simple sequences of elements
•  Each ListElement contains

•  One or more pieces of data
•  Defined using properties
•  No information about how to display itself

•  ListElement does not have pre-defined properties
•  All properties are custom properties

© 2015 17

ListModel {
 id: nameModel
 ListElement { … }
 ListElement { … }
 ListElement { … }
}

ListModel {
 id: nameModel
 ListElement { name: "Alice" }
 ListElement { name: "Bob" }
 ListElement { name: "Jane" }
 ListElement { name: "Victor" }
 ListElement { name: "Wendy" }
}

Defining a List Model

•  Define a ListModel
•  With an id so it can be referenced

•  Define ListElement child objects
•  Each with a name property
•  The property will be referenced by a delegate

© 2015 18

Demo: qml-presenting-data/ex-models-views/list-model-list-view.qml

Component {
 id: nameDelegate
 Text {
 text: name;
 font.pixelSize: 32
 }
}

Defining a Delegate

•  Define a Component to use as a delegate
•  With an id so it can be referenced
•  Describes how the data will be displayed

•  Properties of list elements can be referenced
•  Use a Text item for each list element
•  Use the value of the name property from each element

•  In the item inside a Component
•  The parent property refers to the view
•  A ListView attached property can also be used to access the view

© 2015 19

Column {
 anchors.fill: parent
 Repeater {
 model: nameModel
 delegate: nameDelegate
 }
}

Using a List Model

•  A Repeater fetches elements from nameModel
•  Using the delegate to display elements as Text items

•  A Column arranges them vertically
•  Using anchors to make room for the items

© 2015 20

Working with Items

•  ListModel is a dynamic list of items
•  Items can be appended, inserted, removed and moved

•  Append item data using JavaScript dictionaries:
•  bookmarkModel.append({"title": lineEdit.text})

•  Remove items by index obtained from a ListView
•  bookmarkModel.remove(listView.currentIndex)

•  Move a number of items between two indices:
•  bookmarkModel.move(listView.currentIndex, listView.currentIndex + 1,

number)

© 2015 21

List Model Hints

•  Note: Model properties cannot shadow delegate properties:

© 2015 22

ListModel {
 ListElement { text: "Alice" }
}

Component {
 Text {
 text: text; // Will not work
 }
}

Rectangle {
 width: 400; height: 200; color: "black"
 ObjectModel {
 id: labels
 Rectangle { color: "#cc7777"; radius: 10.0
 width: 300; height: 50
 Text { anchors.fill: parent
 font.pointSize: 32; text: "Books"
 horizontalAlignment: Qt.AlignHCenter } }
 Rectangle { color: "#cccc55"; radius: 10.0
 width: 300; height: 50
 Text { anchors.fill: parent
 font.pointSize: 32; text: "Music"
 horizontalAlignment: Qt.AlignHCenter } }
} }

Defining an Object Model (Visual Item Model)

•  Define a ObjectModel item
•  With an id so it can be referenced
•  Import QtQml.Models 2.1

© 2015 23

Rectangle {
 width: 400; height: 200; color: "black"
 ObjectModel {
 id: labels
 Rectangle { color: "#cc7777"; radius: 10.0
 width: 300; height: 50
 Text { anchors.fill: parent
 font.pointSize: 32; text: "Books"
 horizontalAlignment: Qt.AlignHCenter } }
 Rectangle { color: "#cccc55"; radius: 10.0
 width: 300; height: 50
 Text { anchors.fill: parent
 font.pointSize: 32; text: "Music"
 horizontalAlignment: Qt.AlignHCenter } }
} }

Defining an Object Model (Visual Item Model)

•  Define child items
•  These will be shown when required

© 2015 24

Rectangle {
 width: 400; height: 200; color: "black"
 ObjectModel {
 id: labels
 ….
 }
 Column {
 anchors.horizontalCenter: parent.horizontalCenter
 anchors.verticalCenter: parent.verticalCenter
 Repeater { model: labels }
 }
}

Using an Object Model (Visual Item Model)

•  A Repeater fetches items from the labels model
•  A Column arranges them vertically

© 2015 25

Presenting Data

Views

•  ListView shows a classic list of items
•  With horizontal or vertical placing of items

•  GridView displays items in a grid
•  Like an file manager's icon view

© 2015 27

List Views

Take the model and delegate from before:

© 2015 28

ListModel {
 id: nameModel
 ListElement { name: "Alice" }
 ListElement { name: "Bob" }
 ListElement { name: "Jane" }
 ListElement { name: "Victor" }
 ListElement { name: "Wendy" }
}

Component {
 id: nameDelegate
 Text {
 text: name;
 font.pixelSize: 32
 }
}

ListView {
 anchors.fill: parent
 model: nameModel
 delegate: nameDelegate
 clip: true
}

List Views

•  No default delegate
•  Unclipped views paint outside their areas

•  Set the clip property to enable clipping

•  Views are positioned like other items
•  The above view fills its parent

© 2015 29

Demo: qml-presenting-data/ex-models-views/list-model-list-view.qml

Decoration and Navigation

•  By default, ListView is
•  Undecorated
•  A flickable surface (can be dragged and flicked)

•  To add decoration:
•  With a header and footer
•  With a highlight item to show the current item

•  To configure for navigation:
•  Set focus to allow keyboard navigation
•  Property highlight also helps the user with navigation
•  Unset interactive to disable dragging and flicking

© 2015 30

Demo: qml-presenting-data/ex-models-views/list-view-decoration.qml

ListView {
 anchors.fill: parent
 model: nameModel
 delegate: nameDelegate
 focus: true
 clip: true
 header: Rectangle {
 width: parent.width; height: 10;
 color: "pink” }
 footer: Rectangle {
 width: parent.width; height: 10;
 color: "lightblue" }
 highlight: Rectangle {
 width: parent.width
 color: "lightgray" }
}

Decoration and Navigation

© 2015 31

Decoration and Navigation

•  Each ListView exposes its current item:

•  Recall that, in this case, each item has a text property
•  re-use the listView's currentItem's text

© 2015 32

ListView {
 id: listView
}
Text {
 id: label
 anchors.bottom: parent.bottom
 anchors.horizontalCenter: parent.horizontalCenter
 text: "" + listView.currentItem.text + " is current"
 font.pixelSize: 16
}

Demo: qml-presenting-data/ex-models-views/list-view-current.item.qml

Adding Sections

•  Data in a ListView can be ordered by section
•  Categorize the list items by

•  Choosing a property name; e.g. team
•  Adding this property to each ListElement
•  Storing the section in this property

© 2015 33

ListModel {
 id: nameModel
 ListElement { name: "Alice"; team: "Crypto" }
 ListElement { name: "Bob"; team: "Crypto" }
 ListElement { name: "Jane"; team: "QA" }
 ListElement { name: "Victor"; team: "QA" }
 ListElement { name: "Wendy"; team: "Graphics" }
}

Displaying Sections

Using the ListView
•  Set section.property

•  Refer to the ListElement property holding the section name

•  Set section.criteria to control what to show
•  ViewSection.FullString for complete section name
•  ViewSection.FirstCharacter for alphabetical groupings

•  Set section.delegate
•  Create a delegate for section headings
•  Either include it inline or reference it

© 2015 34

ListView {
 model: nameModel
 section.property: "team”
 section.criteria: ViewSection.FullString
 section.delegate: Rectangle {
 color: "#b0dfb0"
 width: parent.width
 height: childrenRect.height + 4
 Text { anchors.horizontalCenter: parent.horizontalCenter
 font.pixelSize: 16
 font.bold: true
 text: section }
 }
}

Displaying Sections

•  The section.delegate is defined like the highlight delegate

© 2015 35

Grid Views

•  Set up a list model with items:

•  Define string properties to use in the delegate

© 2015 36

ListModel {
 id: nameModel
 ListElement { file: "../images/rocket.svg" name: "rocket" }
 ListElement { file: "../images/clear.svg" name: "clear" }
 ListElement { file: "../images/arrow.svg" name: "arrow" }
 ListElement { file: "../images/book.svg" name: "book" }
}

Demo: qml-presenting-data/ex-models-views/list-model-grid-view.qml

Grid Views

•  Set up a delegate:

© 2015 37

Component {
 id: nameDelegate
 Column {
 Image {
 id: delegateImage
 anchors.horizontalCenter: delegateText.horizontalCenter
 source: file; width: 64; height: 64; smooth: true
 fillMode: Image.PreserveAspectFit
 }
 Text {
 id: delegateText
 text: name; font.pixelSize: 24
 }
 }
}

GridView {
 anchors.fill: parent
 model: nameModel
 delegate: nameDelegate
 clip: true
}

Grid Views

•  The same as ListView to set up
•  Uses data from a list model

•  Not like Qt's table view
•  More like Qt's list view in icon mode

© 2015 38

Decoration and Navigation

Like ListView, GridView is
•  Undecorated and a flickable surface

•  To add decoration:
•  Define header and footer
•  Define highlight item to show the current item

•  To configure for navigation:
•  Set focus to allow keyboard navigation
•  Highlight also helps the user with navigation
•  Unset interactive to disable dragging and flicking

© 2015 39

Demo: qml-presenting-data/ex-models-views/grid-view-decoration.qml

GridView {
 …
 header: Rectangle {
 width: parent.width; height: 10
 color: "pink"
 }
 footer: Rectangle {
 width: parent.width; height: 10
 color: "lightblue"
 }
 highlight: Rectangle {
 width: parent.width
 color: "lightgray"
 }
 focus: true clip: true
}

Decoration and Navigation

© 2015 40

Lab – Contacts

•  Create a ListItemModel, fill it with
ListElement elements, each with
•  A name property
•  A file property referring to an image

•  Add a ListView and a Component to use as a
delegate

•  Add header, footer and highlight properties
to the view

•  Add states and transitions to the delegate
•  Activate the state when the delegate item is current
•  Use a state condition with the

ListView.isCurrentItem attached property
•  Make a transition that animates the height of the item

© 2015 41

XML Models

XML List Models

•  Many data sources provide data in XML formats
•  Element XmlListModel is used to supply XML data to views

•  Using a mechanism that maps data to properties
•  Using XPath queries

•  Views and delegates do not need to know about XML
•  Use a ListView or Repeater to access data

© 2015 43

XmlListModel {
 id: xmlModel
 source: "files/items.xml"
 query: "//item"
 XmlRole { name: "title"; query: "string()" }
 XmlRole { name: "link"; query: "@link/string()" } }
}

Defining an XML List Model

•  Set the id property so the model can be referenced
•  Specify the source of the XML
•  The query identifies pieces of data in the model
•  Each piece of data is queried by XmlRole elements

© 2015 44

Demo: qml-presenting-data/ex-models-views/xml-list-model.qml

XML Roles

•  Element XmlRole associates names with data obtained using XPath
queries

•  Made available to delegates as properties
•  Properties title and link in the above example

© 2015 45

TitleDelegate {
 id: xmlDelegate
}
ListView {
 anchors.fill: parent
 anchors.margins: 4
 model: xmlModel
 delegate: xmlDelegate
}

Using an XML List Model

•  Specify the model and delegate as usual
•  Ensure that the view is positioned and given a size
•  Element TitleDelegate is defined in TitleDelegate.qml

•  Must be defined using a Component element

© 2015 46

Demo: qml-presenting-data/ex-models-views/TitleDelegate.qml

Component {
 Item {
 width: parent.width; height: 64
 Rectangle {
 width: Math.max(childrenRect.width + 16, parent.width)
 height: 60; clip: true
 color: "#505060"; border.color: "#8080b0"; radius: 8
 Column {
 Text { x: 6; color: "white"
 font.pixelSize: 32; text: title }
 Text { x: 6; color: "white"
 font.pixelSize: 16; text: link }
 }
 }
 }
}

Defining a Delegate

•  Property parent refers to the view where it is used
•  Properties title and link are properties exported by the model

© 2015 47

Views Revisited

Customizing Views

•  All views are based on the Flickable item

•  Key navigation of the highlighted item does not wrap around
•  Set keyNavigationWraps to true to change this behavior

•  The highlight can be constrained
•  Set the highlightRangeMode property
•  Value ListView.ApplyRange tries to keep the highlight in a given area
•  Value ListView.StrictlyEnforceRange keeps the highlight stationary, moves the items

around it

© 2015 49

ListView {
 preferredHighlightBegin: 42
 preferredHighlightEnd: 150
 highlightRangeMode: ListView.ApplyRange

 …
}

Customizing Views

•  View tries to keep the highlight within range
•  Highlight may leave the range to cover end items
•  Properties preferredHighlightBegin and

preferredHighlightEnd should
•  Hold coordinates within the view
•  Differ by the height/width of an item or more

© 2015 50

Demo: qml-presenting-data/ex-models-views/list-view-highlight-range-apply.qml

ListView {
 preferredHighlightBegin: 42
 preferredHighlightEnd: 150
 highlightRangeMode:
 ListView.StrictlyEnforceRange
 …
}

Customizing Views

•  View always keeps the highlight within range
•  View may scroll past its end to keep the highlight in

range
•  Properties preferredHighlightBegin and

preferredHighlightEnd should
•  Hold coordinates within the view
•  Differ by the height/width of an item or more

© 2015 51

Demo: qml-presenting-data/ex-models-views/list-view-highlight-range-strict.qml

Optimizing Views

•  Views create delegates to display data
•  Delegates are only created when they are needed
•  Delegates are destroyed when no longer visible
•  This can impact performance

•  Delegates can be cached to improve performance
•  Property cacheBuffer is the maximum number of delegates to keep (calculated as a multiply of

the height of the delegate)
•  Trades memory usage for performance
•  Useful if it is expensive to create delegates; for example

•  When obtaining data over a network
•  When delegates require complex rendering

© 2015 52

